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Flow reconstruction from sparse sensors
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Introduction and Motivation

Multi-geometry FR models not as simple as adding data from multiple flow cases
to your dataset

Model shouldn’t have to guess the shape of the immersed object



Schwarz-Christoffel Mappings
Idea: Map all fluid domains to the same shape so no guessing is needed

Schwarz-Christoffel conformal mappings can be used to do this for 2D

Annular sampling versus Cartesian sampling



Dataset – Geometries
80 random geometries; 64 training and 16 test

Re = 300 simulations past each geometry using PyFR (implicit LES, artificial
compressibility)



Dataset – Sensor setup
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Tasks

Spatial multigeometry flow reconstruction (SMGFR) – sensor measurements
and ground truth fields are contemporaneous

Spatio-temporal MGFR (STMGFR) – Ground truth fields are in the future
relative to the sensor measurements



Models – Spatial task

Evaluated various model architectures, one based on the UNet architecture
performed best
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Models – Spatio-temporal task

Trained using the outputs of the spatial models as inputs. Choose some temporal
gap of k timesteps between the input and output snapshots.

Can be trained for different temporal gaps without re-training the spatial model.

Set k = 0 to use this model as a denoising autoencoder
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Models – Spatio-temporal task
Combine the spatial model with a further model to predict future snapshots from
current reconstructed snapshots
Chosen architecture is a six-layer 64-channel FNO model
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Results – Spatial task – Velocity and Pressure
Annular sampling enables pressure and velocity components to be estimated with
mean absolute percentage errors (MAPE) below 3% and 10%, respectively

p u v
MAE MAPE MAE MAPE MAE MAPE

Annular sampling 0.0118 2.43% 0.0264 8.26% 0.0122 9.40%
Cartesian sampling 0.0133 3.32% 0.0332 11.56% 0.0164 15.61%

Pressure prediction example; target (left), prediction (middle), % error (right):



Results – Spatial task – Velocity and Pressure
u-velocity prediction example

v -velocity prediction example



Results – Spatial task – Velocity and Pressure
The pressure and velocity reconstructions can be used to estimate lift and drag via
the body force method

Comparison of the two sampling strategies:

CL CD

MAE MAPE MAE MAPE

Annular sampling 0.0253 4.97% 0.0214 8.57%
Cartesian sampling 0.0966 28.18% 0.0684 29.67%

Annulus sampling removes the need to interpolate variables to object boundaries,
greatly boosting accuracy.

Enables force estimation at Re = 300 with MAPE levels comparable to those
reported for laminar flow by Chen et al. at Re = 10



Results – Spatial task – Velocity and Pressure

Predicted lift and drag coefficient time evolution for a randomly chosen validation
geometry, using Annular sampling
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Results – Spatial task – Vorticity

The reconstruction relationship between velocity/pressure sensor inputs and full
vorticity fields is more complicated compared to pressure/velocity full fields

Hence, percentage error levels are higher:

SD SD-UNet
MAPE HVM MAPE HVM

Annular sampling 44.29% 34.28% 39.92% 31.37%
Cartesian sampling 59.88% 46.14% 47.64% 39.88%

High Vorticity MAPE (HVM): MAPE filtered to not include gridpoints that
have ground truth magnitudes under 1% of the peak vorticity magnitude



Results – Spatial task – Vorticity
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Results – Spatial task – Vorticity

The high error levels can be brought down by applying the time-marching FNO
model with a k = 0 temporal gap, bringing errors down by about ≈ 10%:

SD-UNet+FNO SD-UNet
MAPE HVM MAPE HVM

Annular sampling 28.89% 17.86% 39.92% 31.37%

In this configuration, the FNO model acts like a denoising autoencoder



Results – Spatio-temporal task – Vorticity

Input the current full vorticity field into the FNO model and predict the full
vorticity field k timesteps in the future

Future vorticity fields can be predicted with minimal percentage error penalties

k (∆τ∗ 1)
0 (0.0) 20 (0.667) 80 (2.667)

MAPE HVM MAPE HVM MAPE HVM

From ground truth 19.76% 10.75% 23.40% 11.75% 29.58% 19.53%
From reconstruction 28.89% 17.86% 31.02% 17.86% 31.88% 21.97%

1τ∗ = τu∞/Lm, where Lm is the length of the side of the box where Bezier curve control points are
randomly chosen in



Results – Spatio-temporal task – Vorticity
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Results – Spatio-temporal task – Vorticity
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Conclusion

Flow reconstruction around unseen geometries with errors < 3%, < 10% and
< 30% of p, u and ω

Predict lift and drag with error levels on the order of 5% and 9% respectively

Estimate future vorticity fields in the future from current sensor measurements

Future work:

3D
more advanced NN architectures
predictions at different Re without retraining
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Code repositories:

Data generation and training: https://github.com/aligirayhanozbay/flow prediction
Conformal mapping software: https://github.com/aligirayhanozbay/pydscpack


