
1

NVIDIA Grace
Contact: Filippo Spiga <fspiga@nvidia.com>

2

NVIDIA Grace for HPC & AI Infrastructure

Accelerated applications where CPU performance and
system memory BW are critical; extreme and highly

atomic collaboration between CPU & GPU contexts for
flagship AI & HPC

Applications that run on CPU but where absolute
performance, energy efficiency, and datacenter density

matter, such as in scientific computing, data analytics, and
hyperscale computing applications

Grace Hopper Superchip
Giant Scale AI & HPC

Grace CPU Superchip
CPU Computing

3

NVIDIA Grace CPU Superchip
The Full Power of Grace

Specifications Grace SuperChip

Architecture Armv9.0-A, SVE2 with 4x128b SIMD
pipeline/core

Cores / Speed 144 cores, 3.2GHz

Memory LPDDR5x soldered down, 1TB/s BW
Up to 1TB per superchip

Cache
L1: 64KB i-cache + 64KB d-cache per core
L2: 1MB per core
L3: 234MB per superchip

Power 500W including LPDDR5x memory

Interfaces Up to 8x PCIe Gen5 x16 HS interface

Process Node TSMC 4N

Availability H1 2023

4

5

6

7

8

9

NVIDIA Grace vs. Fujitsu A64FX
A64FX is an outlier in every way – Grace is mainstream

Familiar design
• High single-thread performance
• Simple memory hierarchy

Large user
community

• Runs key HPC applications out-of-the-box
• Standard best practices hold true

Significant
fraction of peak

w/o tuning

• OSS toolchains (i.e. GNU) are tuned for u-arch
• Performance curves generally follow expectation

EXTREME HPC CODESIGNMAINSTREAM LEADERSHIP HPC

Codesigned for
specific

application

• Custom hardware or software
• Trades generality for performance

Small userbase of
extreme experts

• Nonstandard software environments
• Common assumptions may hurt performance

Significant tuning
effort required

• OSS toolchains unlikely to be performant
• Plan for man-months of optimization effort

10

Grace Uses Arm Neoverse Cores

• Arm Neoverse V2 – like AWS Graviton 3 next-gen

• “NVIDIA Grace and CXL 2.0 PCIe Gen5 CPUs”

• https://www.servethehome.com/arm-neoverse-v2-
cores-launched-for-nvidia-grace-and-cxl-2-0-pcie-
gen5-cpus/

• https://www.theregister.com/2022/09/14/nvidias_gra
ce_arm_neoverse_v2/

• https://www.hpcwire.com/off-the-wire/arm-
announces-enhancements-for-its-neoverse-
platform/

https://www.servethehome.com/arm-neoverse-v2-cores-launched-for-nvidia-grace-and-cxl-2-0-pcie-gen5-cpus/
https://www.theregister.com/2022/09/14/nvidias_grace_arm_neoverse_v2/
https://www.hpcwire.com/off-the-wire/arm-announces-enhancements-for-its-neoverse-platform/

11

Application Porting: Many Non-Trivial Cases Really Are Trivial
Vector intrinsics, dependencies, and nonstandard features are easily ported

Vector Intrinsics

Dependency
Assembly Language

Nonstandard Compiler
Features

Intrinsic conversion tools – SIMDe, SSE2NEON, etc.

Compiler translation
guides

Cloud momentum
Arm ecosystem growth

Job done!
Found on Arm at another HPC center

Straightforward, easy work < 1 day
Recompile and reconfigure runtime parameters

*Indicative workload mix inspired by an US DoE lab usage

12

Explicit Copy
Application explicitly moves data between
CPU & GPU as needed

PCIE: ~60 GB/s PCIE transfers (H2D/D2H)

Grace: Faster transfers; up to 450 GB/s C2C
transfers (per direction)

Managed Memory
CPU and GPU can access memory on-
demand and data migrated locally for higher
BW access

PCIE: Requires migration to GPU

Grace: Migrations not required and faster
migrations when they happen

Grace-Hopper Memory Model
Full CUDA support with additional Grace memory extensions

System Allocated
GPU can access memory allocated from
malloc(), mmap(), etc.

PCIE: Access possible with explicit call to
cudaHostRegister() at PCIe speeds

Grace: cudaHostRegister() not needed;
access at NVLink C2C speeds

cudaMemcpyH2D()

cudaMemcpyD2H()

CPU Memory

App Data

Results

GPU Memory

App Data

Results

GPU access to malloc()
memory

CPU Memory

App Data

GPU Memory

App Data

CPU Memory

Page 1

Page 2

GPU Memory

Page 1

Page 2

Page
Migration GPU

page
fault

C2C Path
(Grace)

13NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Simplifying the Developer Experience
Universal accessibility of memory

Call Action

malloc,
mmap,
cudaMallocManaged

• Allocation of either GPU or CPU memory, or combined
GPU memory and CPU memory, across sockets

• Application control placement at page granularity via
first touch

• Accessible to all computing devices
• Application can migrate existing pages

cudaMalloc • allocate one socket’s GPU memory, accessible to all
GPUs (not accessible to CPU), does not migrate

cudaMallocHost • allocate CPU Memory, universally accessible, does not
migrate

Allocation, Placement and Migration

• malloc() will “just work” across CPU
and GPU including all features, e.g. the
atomics, the standard memory
consistency model, etc.

• All memory, including mmap(), stack
variables, global variables, Linux kernel
syscall returning a pointer, etc.

• Placement/migration gives application
flexibility. E.g, with mmap() use GPU
memory instead of CPU memory for file
cache

14

